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ABSTRACT

Background/Aims: To screen cuproptosis-related genes (CRGs) and construct a prognosis risk model for hepatocellular carcinoma
(HCC) based on transcriptome data.

Materials and Methods: Transcriptome, gene expression, and clinical data of HCC were downloaded from the Cancer Genome Atlas
(TCGA) and Gene Expression Omnibus (GEO) databases to screen CRGs. Differential genes were screened, and Cox analysis and LASSO
regression analysis were performed. The clinical value of the constructed model for HCC patients was assessed. Patient survival rates
were predicted. The expression of relevant genes in liver cancer tissues and adjacent tissues was verified, and the prognostic risk for
patients was evaluated.

Results: Nineteen CRGs were identified, and 15 genes were expressed differently in tumor tissues and normal tissues. Multivariate analy-
sis and LASSO regression analysis showed that 15 genes related to prognostic risk were screened, based on which a prediction model of
9 CRGs was constructed. High-risk patients, as determined by the prognostic model, showed a significantly decreased survival rate rela-
tive to low-risk patients. Tumor microenvironment and drug sensitivity were closely related to risk scores. Nomograms predicted survival
probabilities for liver cancer patients over 1-, 3-, and 5-year periods at 91.6%, 62.4%, and 56.3%, respectively. Reverse transcription-
quantitative polymerase chain reaction experiments verified the relevant gene expression that made up the model in liver cancer and
adjacent tissues.

Conclusion: The constructed prognostic risk model can predict the prognosis of HCC well and may be used for risk stratification, immu-

notherapy evaluation, and drug susceptibility analysis.
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INTRODUCTION

Liver cancer stands as the third most common cause of
cancer-related deaths across the globe.! Major risk fac-
tors for hepatocellular carcinoma (HCC) include hepatitis
B virus (HBV) or hepatitis C virus (HCV) infection, chronic
alcohol consumption, and diabetes. It is rare for surgi-
cal resection to cure early liver cancer in most patients.?
The opportunity for radical surgery is often lost because
most liver cancer patients are diagnosed at an interme-
diate to advanced stage. Hepatocellular carcinoma is the
predominant form of primary liver cancer, with approxi-
mately 830 000 new cases reported globally in 2020.3
An increasing number of combination therapies, such
as immune checkpoint inhibitors in combination with
tyrosine kinase inhibitors, are currently being tried, but
the prognosis is still suboptimal. In spite of studies dem-
onstrating major risk factors,* the pathogenesis of HCC
is not yet fully understood.® As a highly heterogeneous
malignant tumor, there is an urgent need to clarify the key
factors involved in the development of HCC, explore its

underlying mechanisms, and search for new and effective
therapeutic targets.

Tumor development may be affected by copper imbal-
ance through oxidative stress in the body.® Copper targets
lipidized tricarboxylate circulating proteins to induce cell
death, which is associated with a variety of liver diseases.
Copper ions bind directly to the lipoylated parts of the
tricarboxylic acid cycle, creating proteotoxic stress that
leads to cell death.”® Hepatocellular carcinoma cells show
an increased synthesis of copper-binding proteins, which
in turn leads to a significant increase in the copper content
of the cell cytoplasm and a weakened ability to counteract
the oxidative stress damage associated with copper over-
load.® A cohort study showed a correlation between serum
copper levels and the prognosis of HCC patients, with
higher concentrations associated with a worse progno-
sis.'® Mitochondrial metabolic reprogramming is also one
of the phenomena that often accompany copper imbal-
ance, leading to excess ROS production and thus cellular
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oxidative stress." CuO nanoparticles can induce apoptosis
of HCC HepG2 cells through reactive oxygen species (ROS)
via the mitochondrial pathway."? Copper-based therapies
show the potential to inhibit tumor growth, especially for
tumors that are insensitive to chemotherapy, and may
provide new strategies for cancer treatment.'®* However,
there is still a need to investigate the mechanisms by
which copper toxicity genes contribute to HCC.

Exploring the predictive significance of cuproptosis-
related genes (CRGs) and their link to tumor mutations
and immunotherapy involved gathering liver cancer
specimens from The Cancer Genome Atlas (TCGA) and
Integrated Gene Expression Omnibus (GEO) databases
to thoroughly examine CRGs' expression, mutation con-
dition, and copy number differences. By analyzing the
differential expression and prognostic analysis of CRGs,
a new prognostic gene model was constructed and its
efficacy was verified. Additionally, pathway analyses
were performed to further evaluate the model’s value in
molecular therapy by exploring the impact of risk scores
on tumor mutation load and immunotherapy.

MATERIALS AND METHODS

Research Workflow

The research workflow diagram for this study is shown in
Supplementary Figure 1.

Collection and Processing of Multi-Omics Data

By accessing the TCGA database (https://portal.gdc.cance
r.gov/), data on gene transcriptomes (n = 424), clinical fea-
tures (n = 377), and gene mutations (n = 364) from liver
cancer patients were downloaded. Data in TPM format
were extracted from this and normalized to log2 (TPM+1),
and samples with RNA-Seq data and clinical informa-
tion were ultimately retained. Next, through access to
the GEO database (https://www.ncbi.nlm.nih.gov/geo
/), the GSE76427 data sets were downloaded to obtain

Main Points

Nineteen cuproptosis-related genes were identified, and
15 genes were expressed differently in tumor tissues and
normal tissues.

Patient survival was significantly lower in the high-risk
group, according to the prognostic model.

Tumor microenvironment and drug sensitivity were closely
related to risk scores.

Reverse transcription-quantitative polymerase chain reac-
tion experiments verified relevant gene expression that
made up the model in liver cancer and adjacent tissues.

corresponding gene expression profile data and clinical
data containing prognostic information. The relevant files
from the TCGA data set were converted and processed
using a Perl script to obtain liver cancer gene expression
files and clinical data files, the samples with incomplete
information were removed, and the data were normalized.
The GEO database and TCGA data were merged to iden-
tify the intersection. The clinical features of all patients
with HCC are shown in Table S1. Consensus analysis was
performed using the "ConsensusClusterPlus” R package,
and an unsupervised cluster analysis was performed on all
samples from TCGA and GEO to identify patient subtypes
based on prognosis-related differentially expressed genes
(DEGS) . A heatmap of DEGs associated with prognostic
CRGs was created using the “pheatmap” package, and to
assess differences in gene expression between subtypes
and produce box plots, the Kruskal-Wallis test was used.

Data on RNA sequencing, along with associated clinical
and subsequent details, were sourced from the TCGA and
GEO (GSE76427) databases. This research incorporated
liver cancer patients for subsequent examination. Data on
tumor node metastasis (TNM) stage, pathological grade,
age, gender, duration of follow-up, and survival condition
were collected. Nineteen regulatory genes associated
with the metabolic pathway of copper toxicity?® have
been identified, including NLRP3, NFE2L2, DLST, ATP7A,
FDA1, DLD, LIPT1, PDHA1, DLAT, PDHB, GCSH, GLS,
MTF1, DBT, and CDKN2A, as well as 4 negatively regu-
lated genes, FDX1, LIAS, SLC31A1, and ATP7B (Table S2).

Screening, Identification, and Prognostic Analysis of
Cuproptosis-Related Genes

The RNA-Seq data of all samples were normalized using
the R software's limma package to analyze the differential

Table 1. Primer Sequence

Gene Forward primer (56’ —»3’) Reverse primer (5' -3')
S100A9 CAGCTGAGCTTCGAGGAGGTT CGTGCATCTTCTCGTGGGAG
FTCD ATGTCCCAGCTGGTGGAATG CCAGGTACTCGATGATCCGC
POF1IB  CTCTGCACACTGGCAACAAC CCGCAACTTGGAGAGTTCCT
IL7R AAATATGTGGGGCCCTCGTG AAGTCATTGGCTCCTTCCCG
MYO1E GCAAGTGCAGTTCCACCAAG TCCTTCTGGTAGGACGGGAG
SPINK1 TGACTCCCTGGGAAGAGAGG AGTCCCACAGACAGGGTCAT
CXCL9 TGAGAAAGGGTCGCTGTTCC GGGCTTGGGGCAAATTGTTT
AGFG1 GGTGGTGATCAGGGAAGTGG ACCAGCAGCAGCAACAAATG
IQGAP3 TGGGATTGGCCCCTCAGATA AGCTCCTTCACAGTGTCAGC
GAPDH GTCAAGGCTGAGAACGGGAA AAATGAGCCCCAGCCTTCTC
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Figure 1. Expression and gene changes of CRGs in liver cancer. A: Distribution of differential expression of CRGs in tumor tissues and normal
tissues in the TCGA dataset. B: Frequencies of CNV gain, loss, and non-CNV among CRGs. Red indicates copy number gain, and green
indicates copy number loss. C: Circos plots of chromosome distribution of CRGs. Outer circles represent chromosomes; inner circles represent
locations corresponding to CRGs; red is copy number gain of CRGs, blue is loss, and black is no significant gain or loss. D: Tumor mutation
frequencies of CRGs. Horizontal coordinates represent HCC mutation load samples, vertical coordinates represent CRGs on the left side,
while the right side represents the mutation frequencies of the corresponding genes; nonsense mutations are shown in red, missense
mutations in green, splice sites in orange, deletions in yellow, multiple mutations in black, and no mutations in gray (*P < .05, **P < .01,
***P < .001). CNV, copy number variation; CRGs, cuproptosis-related genes.

expression of genes between normal tissues and tumor tis-
sues. The intersecting genes were obtained by processing
the gene data from the TCGA database with the “limma”
and "sva" packages of Rv4.3.0 (R foundation for Statistical
Computing; Vienna, Austria). After excluding all normal
samples, the remaining tumor samples were merged to cre-
ate an integrated gene expression file for liver cancer tumor
samples. Cuproptosis-related genes were screened using
the R "limma" package to identify DEGs between normal
and tumor tissues. P-values less than .05 were considered
to be significantly different. The "maftools” and “RCircos”
packages were used to analyze CRG mutations and copy

number variation (CNV), and one-way Cox regression anal-
ysis was performed using the R language software package
“survival” to screen the correlation between the previously
obtained DEG levels and clinical prognosis.

Model Construction and Verification

According to the random sampling method, all samples
were divided into a train group, a test group, and an all
group at a 1:1 ratio. For the training set data, one-factor
significant gene expression matrices were analyzed using
least absolute shrinkage and selection operator (LASSO)
regression via the “glmnet” package in the R software, with
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Table 2. Analysis of Survival Prognosis of Cuproptosis-Related Genes

To evaluate the prognostic risk model's effectiveness as
an independent predictor of prognosis in HCC patients,

Genes HR (95% ClI) P (Cox) P(KM) both univariate and multivariate Cox regression analyses
NFE2L2  1.244(1.010-1.532) .0400.040 .005 were conducted using the log-rank test, where a P-value
NLRP3 1.302(0.957-1.770) 093 025 below .05 indicated a statistically significant difference.
ATP7B 0.939(0.764-1.156) 5563 .024 . .

ATP7A 1.409(1.051-1.890) 022 009 The R software packages used here include timeROC,
SLC31A1  0.969(0.783-1.200) 775 .065 survival, and survminer. Overall survival (OS) results were
FDX1 0.988(0.767-1.273) 827 046 compared using Kaplan—-Meier analysis across all cohorts.
LIAS 0.993(0.694-1.420) .967 .080 L. T

LIPTA 2.042(1.401-2.977) 001 6.66E-06 In addition, prognostic differences between subgroups by
DLD 1.154(0.908-1.467) 242 024 clinical stage were analyzed.

DLAT 1.318(1.107-1.570) .002 .001

PDHA1 1.322(1.001-1.745) .049 6.45E-05 . .
PDHB 1.422(1.046-1.934) 025 001 Con.structn.tg a .Nomogram to Evaluate the Prognosis of
MTF1 1.330(0.999-1.772) .051 .018 Patients with Liver Cancer

GLS 1.199(1.044-1.379) 010 004 Cox regression analyses were conducted on both uni-
CDKN2A  1.152(1.017-1.305) .026 .002 iat d ltivariate data to identif ible ind
DBT 1.015(0.791-1.304) ‘905 163 variate and multivariate data to identify possible inde-
GCSH 1.385(0.969-1.979) 074 018 pendent prognostic factors. A nomogram was developed
DLST 1.098(0.845-1.426) 484 005 using the R “rms" package, taking into account risk scores

a 10-fold cross-validation to select the optimal penalty
coefficient (A) for the LASSO significant gene expression
data. A multifactorial Cox analysis of the genes significant
in LASSO was performed using the R language software
“survival” package to create a risk score model. Patient
classification was based on the median risk score, verified
through receiver operating characteristic (ROC) analysis.

and clinical factors such as gender, age, and tumor stage.
Furthermore, calibration curves were generated for 1, 3,
and 5-year OS in order to compare the model with actual
performance. A consistency index (C-index) was also cal-
culated using the C-index method to measure the align-
ment between the predicted outcomes and the actual
observations. A higher C-index indicates a greater degree
of accuracy for the predictive model.
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Figure 2. Prognostic significance of CRGs in patients with HCC. A-O: Kaplan—-Meier analysis between 15 highly and lowly expressed CRGs
with OS in HCC patients. CRGs, cuproptosis-related genes; HCC, Hepatocellular carcinoma; OS, overall survival.
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related genes.

Collection and Processing of Tissue Samples

A total of 18 cases of cancer and their paired normal tis-
sues were obtained from liver cancer patients undergo-
ing surgery at the hospital. This study was approved by
the Research Ethics Committee of Shantou University
Affiliated Yuebei People’'s Hospital (Approval No.
202205GD983; approval date: May 23, 2022), and each
patient provided written informed consent. Inclusion
criteria were as follows: (1) Radical hepatectomy or
hepatectomy for HCC and a clear postoperative patho-
logical diagnosis; (2) primary tumor surgery and no prior
radiotherapy, chemotherapy, immunotherapy, or other
neoadjuvant therapy; (3) no previous tumor history; (4)
complete clinicopathological data of patients; and (5)
no obvious acute inflammatory diseases. Exclusion cri-
teria were as follows: (1) Patients with tumors at other
sites; (2) samples of small cancer tissue that would
affect postoperative pathology; and (3) postoperative
follow-up time of less than 1 month or loss to follow-
up. The tissue sampling criteria were as follows: (1)

Sampling should be completed within 30 minutes after
isolation. At least 1 pair of liver cancer tissue and para-
cancer tissue should be collected from each patient.
The central part of the tumor should be removed, and
the para-cancer tissue should be removed from the
edge of the tumor above 3 cm; (2) after 2 washes with
PBS, the necrotic tissue was removed, and the remain-
ing tissue was cut into tissue blocks with a diameter
of about 0.5 cm, which were respectively put into 1.5
mL EP tubes, immersed with RNALater, and stored in
a refrigerator at —=80°C; and (3) 18 liver cancer samples
and 18 para-cancer samples were selected for reverse
transcription-quantitative PCR (RT-qPCR) and col-
lected at the same time.

Reverse Transcription-Quantitative Polymerase Chain
Reaction

Total RNA was extracted using Trizol reagent
(ThermoFisher). cDNA synthesis corresponding to mRNA
was carried out using the PrimeScript RT kit with gDNA
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for each group is shared, representing the shared ascending risk score sample. A, D, G: Risk curves for high- and low-risk groups in the
prognostic model (Y-axis is risk score). B, E, H: Scatterplot of patient survival in high- and low-risk groups in the prognostic model (Y-axis is
survival time; blue represents survival, red represents death). From left to right, there are more and more red dots, fewer and fewer blue dots,
and survival time is getting shorter and shorter. C, F, I: Risk heatmap of high- and low-risk groups in the prognostic model.

Eraser (Takara) and SYBR Green gPCR Master Mix kit
(Beyotime). Reverse transcription-quantitative poly-
merase chain reaction was performed with specific PCR
primers. The internal reference gene was GAPDH. The
primers are listed in Table 1.

Statistical Analysis

Statistical analysis and data processing were performed
using Perl software v5.30.0 (The Perl Foundation, Texas,
USA) and R software v4.2.2 (R Foundation for Statistical
Computing; Vienna, Austria). Continuous variables are
indicated as mean + SD. Reverse transcription-quanti-
tative polymerase chain reaction was performed with
specific primers. Cuproptosis-related genes (CRGs) and
differentially expressed CRGs (DECRGs) were analyzed
using Kruskal-Wallis rank sum testing. The clinicopatho-
logical features of the training set and the test set were
analyzed using the chi-square test. Log-rank tests were
employed to compare OS with median OS, while Wilcoxon
tests were used to examine the relationship between
characteristic genes and immune checkpoint expres-
sion. The Spearman technique was used for correlational

studies, the Wilcoxon test for intergroup comparisons,
Cox regression for assessing survival risk and hazard ratio
(HR), LASSO regression for developing risk models, and
Kaplan-Meier and log-rank tests for contrasting sur-
vival disparities among groups. A P-value below .05 was
deemed to hold statistical significance.

RESULTS

Screening, Identification, and Analysis of Prognostic
Cuproptosis-Related Genes

Among the 19 CRGs included in this study, 15 were dif-
ferentially expressed in normal tissue and tumor samples
(Figure 1A), among which 6 were downregulated genes
and 13 were upregulated genes. Among 371 liver cancer
samples, 38 (10.24%) had CRG mutations (Figure 1B), 4
genes had CNV deletions,and 10 genes had CNV increases
(Figure 1C). The CNVs of CRGs across 23 chromosomes
were obtained (Figure 1D).

Univariate Cox regression and Kaplan-Meier analyses
showed 15 genes correlated significantly with liver can-
cer prognosis (P < .05) (Table 2). NLRP3, NFE2L2, DLST,
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Figure 5. Model survival curve analysis and ROC curve. A and D are the all group, B and E are the test group, and C and F are the train group.
A-C: survival analysis of high- and low-risk groups in the prognostic model. D: Survival prediction analysis with ROC curves according to the

prognostic model.

ATP7A, DLD, LIPT1, PDHA1, DLAT, PDHB, GCSH, GLS,
MTF1, DBT, and CDKN2A were high-risk prognostic genes
(HR > 1, P <.05). FDX1, LIAS, SLC31A1, and ATP7B were
protective genes (HR <1, P <.05). The Kaplan—-Meier curve
illustrates that patients with HCC exhibiting elevated
ATP7B and FDX1 gene levels experienced a prolonged OS
in contrast to those with lower expression, whereas those
with high expression levels had a reduced OS compared
to their low expression counterparts (Figure 2).

Prognostic Risk Model Based on Cuproptosis-Related
Genes

Sankey’'s chart was plotted to illustrate the distribu-
tion of subtypes, model risk scores, and prognosis from
cluster analysis (Figure 3A). First, 487 patients were ran-
domly divided into a train set (n = 244) and a test set (n
= 2438). Univariate Cox and LASSO regression analyses
were performed on 15 DEGs. Nine prognostic risk genes

(AGFG1, IQGAP3, MYO1E, FTCD, POF1B, IL7R, S100A9,
CXCL9, and SPINK1) were screened out (Figure 3B-3D),
and the prognostic model of the 9 genes was constructed
with risk score = (0.8186 * AGFG1 expression) +(0.3142
* IQGAP3 expression)+(-0.6841 * MYO1E expres-
sion) +(-0.2103 * FTCD expression)+(0.1900 * POF1B
expression) +(-0.2288 * IL7R expression)+(0.0903
* S100A9 expression)+(-0.15691 * CXCL9 expres-
sion) +(0.0787 * SPINK1 expression).

Patients were split into high-risk and low-risk groups
according to the median risk score, with risk curves plot-
ted for the train group, the test group, and all groups
(Figure 4). The risk of death increased with the risk score
in the train, test, and all groups. Meanwhile, the differen-
tial expression of CRGs between high and low-risk groups
was observed, including 4 downregulated genes (MYO1E,
FTCD,IL7R,and CXCL9) and 5 upregulated genes (AGFG1,
IQGAP3, POF1B, S100A9, and SPINK1).
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Figure 6. Assessment of the effect of forest maps and array maps in independent prognostic analysis. A: Univariate Cox analysis of factors
influencing hepatocellular carcinoma prognosis. B: Multivariate Cox analysis of independent factors influencing hepatocellular carcinoma
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Figure 9. Differential expression of model genes in tumor tissues and normal tissues in the Cancer Genome Atlas database.

In the case of DEGs, patients were arbitrarily segregated
into train, test, and all groups. The Kaplan-Meier analysis
revealed that individuals in the high-risk group of the train
group had a much shorter survival duration than those in
the low-risk group (P < .05). Similar results were observed
across the test and all groups (all P < .05) (Figure 5). The
ROC analysis of the model was conducted using the
"timeROC package” in R software, and ROC curves were
generated for 1, 3, and 5 years. The 1-year, 3-year, and
5-year area under the curve (AUC) of the all groups were
0.785, 0.757, and 0.770, respectively, indicating that the
prognostic risk model had good predictive performance
(Figure 5). The model was validated using univariate and
multivariate Cox regression analyses. According to the
forest plot, OS was significantly correlated with risk score
and clinical stage, whereas gender and age could not be
used as independent factors to determine prognosis
(Figure 6).

Predictive Value of the Model

A total score of 122 points was obtained by consider-
ing the contributions of different factors to the survival
rate. The rates for 1-year, 3-year, and 5-year survival were
93.1%, 84.8%, and 74.2%, respectively. The nomogram's
calibration curve demonstrated superior predictive abil-
ity for 1-year, 3-year, and 5-year survival compared to
the ideal model (Figure 7A). C-index analysis showed
that the C-index of the model was 0.700, indicating that
the nomogram had a relatively good prognostic value
(Figure 7B). Finally, a clinical stratification analysis was

performed to determine clinical factors (tumor stage).
Results demonstrated a marked improvement in sur-
vival rates for low-risk patients with stage I-Il or stage
I11-IV tumors compared to high-risk patients (P < .001)
(Figure 8).

Differential Expression Analysis and Prognosis Analysis
of Model Genes

The reliability of the model was further explored by con-
ducting a differential analysis of gene expression on TCGA
data. The analysis of TCGA liver cancer data showed that
the expressions of AGFG1, IQGAP3, SPINK1, CXCL9,
MYO1E, and POF1B were significantly increased in tumor
tissues (Figure 9). The expressions of S100A9, FTCD,
and IL7R were increased in normal tissues. The Kaplan—
Meier Plotter (http://kmplot.com/analysis/index.php?p=s
ervice) was used for analyzing model genes and OS of
HCC patients. Hepatocellular carcinoma patients’ prog-
nosis was significantly impacted by all 9 genes, according
to the KM curve (Figure 10).

Expression of Prognostic Genes in Liver Cancer and
Normal Tissues

Through bioinformatics analysis, a prognostic model of
liver cancer associated with 9 DECRGs was obtained.
Normal tissues exhibited higher levels of ST00A9, FTCD,
POF1B, IL7R, and MYO1E, whereas tumor tissues showed
increased expressions of SPINK1, CXCL9, AGFG1, and
IQGAPS (Figure 11).
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Figure 10. Survival curve analysis of genes associated with hepatocellular carcinoma prognosis at high and low expression levels. A-I: Survival
curve analysis of 9 genes associated with the hepatocellular carcinoma prognosis model at high and low expression.

DISCUSSION

There will be more than 1 million cases of liver cancer in
2025, a steadily rising rate."* Cuproptosis, a new form of
programmed cell death, exhibits unique characteristics
that set it apart from oxidative stress-related cell death,
which is positively associated with cancer progression.

Through the application of univariate regression, LASSO

Cox regression, and multifactor regression analyses, 9
DECRGs were obtained. Following this, 9 DECRGs were
employed to create a predictive risk model, assessed
through survival, mutational, and independent prognostic

analyses, demonstrating strong predictive capabilities.
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Figure 11. Reverse transcription-quantitative polymerase chain reaction detection of mMRNA expression of hepatocellular carcinoma
prognosis-related genes in tumor tissues and normal tissues. A-I: Expression levels of 9 genes associated with the hepatocellular carcinoma
prognosis model in tumor tissues and normal tissues.
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It has been reported that some model genes are associ-
ated with the prognosis and progression of liver cancer and
other tumors. AGGF1 is a common oncogene with high
levels within tumors such as glioblastoma, colorectal, and
gastric cancers. Notably, AGGF1 can promote angiogene-
sis of liver cancer, is overexpressed in liver cancer, and pre-
dicts poor prognosis.' In addition to this, overexpression of
AGGF1 significantly promotes HCC progression by rescue
experiments.'® These results are in agreement with this
study, but no further exploration in animal experiments
was pursued. Xi et al”” found that HBV induced S100A9
to activate RAGE/TLR4-ROS signals, which promoted the
growth and metastasis of HCC." This study's results are
consistent with previous findings that S100A9 is related
to poor prognosis in HCC patients. Man et al?® found that
SPINK1 knockout can inhibit the growth of liver cancer
and its ability to resist chemotherapy.'® FTCD shows a high
level of expression in the liver, yet its expression is markedly
reduced in HCC. Regularly, the use of FTCD immunostain-
ing, either singly or alongside other proteins, has demon-
strated considerable diagnostic importance in the initial
detection of HCC. Low levels of FTCD in HCC patients are
associated with poor prognoses, while cirrhosis and low
levels of FTCD are associated with a significantly higher
risk of HCC.2® Hepatocellular carcinoma tumors that
express high levels of CXCL3 are associated with a worse
prognosis compared to those with low CXCL3 expres-
sion. In addition, Zhang et al*?> showed that CXCL3 played
a key role in humoral immune infiltration in the develop-
ment of cirrhosis-related liver cancer.?' At present, there
is no study on the relationship between MYO1E and liver
cancer, but the study by Liu et al*® showed that MYO1E
is mainly expressed in pancreatic adenocarcinoma (PAAD)
and is negatively correlated with the survival and prognosis
of patients.?2 This is in line with the survival curve analysis
outcomes for varying MYO1E expression, suggesting that
MYO1E may serve as a useful therapeutic target in HCC.
POF1B is mainly expressed in polarized epithelial tissues,
and the aberrant expression of POF1B is closely related to
malignant tumors such as cutaneous squamous cell carci-
noma and lung adenocarcinoma. Fourteen genes, including
POF1B, have previously been combined to form a prog-
nostic model for predicting HCC prognosis with vascular
infiltration,2® which implies that POF1B could be a novel bio-
marker for HCC prognosis. However, at present, the poten-
tial mechanisms linking the prognosis of HCC patients
with these 9 genes remain unclear, which can be the focus
of future research.

A significant difference in feature genes was found
between neighboring non-tumor samples and HCC

samples from the TCGA gene database and the
GSE76427 dataset. Similar results were obtained by con-
ducting qRT-PCR analysis. In the GEPIA2 survival data,
these genes showed significant associations with prog-
nosis. A regression coefficient suggests that IQGAP3 is
the most important DECRG in terms of prognostic fac-
tors and prognostic prediction. IQGAP3 functions as a
scaffolding protein, interacting with diverse structural
proteins to alter cytoskeletal dynamics and intracellular
signaling, thus influencing the proliferation and migration
of tumors.2* IQGAP3 expression correlates with aggres-
sive clinicopathologic features.2> Moreover, IQGAP3 pro-
motes Epithelial-Mesenchymal Transition (EMT) and
metastasis through activation of the Ras/ERK pathway
and transforming growth factor and intracellular 2627 and
activation of the Wnt/EMT, and metastasis through acti-
vation of resistance in HCC cells. Various previous find-
ings support the inclusion of IQGAP3 as a prognostic
model for HCC in this study. Moreover, the role of IQGAP3
in the regulation of downstream targets and pathways in
HCC needs to be deeply explored.

The study constructed a prognostic prediction model
for HCC consisting of 9 CRGs based on the TCGA data-
base and the GEO database, which had good predictive
accuracy, differentiation, and clinical efficacy. The vali-
dation demonstrated that the model could help identify
high-risk populations, stratify disease risk management,
and provide personalized prevention programs and that
the predictive information obtained through the model
could prevent the further development of poor prognosis
of HCC.

This research, however, is subject to certain limitations.
The data of this model is retrospective, lacking compre-
hensive verification from external datasets. Additionally,
the sample size was small, despite partial expression test-
ing at the tissue level. A future study will assess the rele-
vance of the model forimmunotherapy and examine how
immunotherapy differs between low-risk and high-risk
patients. Second, this study lacked a stratified analysis of
the model in different subgroups. The model cannot be
clinically assessed for its applicability to patients of dif-
ferent ages, genders, and stages of tumors. At the same
time, the lack of studies on the robustness of the model
also affects the judgment and treatment decision-mak-
ing for patients with complex clinical characteristics,
which not only affects the promotion of the model in
clinical practice but also reduces the acceptance and util-
ity of the model in the clinic. This is a problem that needs
to be overcome and further explored in the future.
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In summary, a novel prognostic CRG model has been
developed to enhance the prediction of HCC progno-
sis, aiding clinicians in evaluating patient outcomes and
informing treatment strategy development.
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Supplementary Figure 1. The workflow diagram for bioinformatics research.



Supplementary Table 1. Analysis of clinical information data  Supplementary Table 2. Abbreviations
based on GEO database and TCGA data

Genes Name
Variables TCEﬁA;0307h60)rt GSE7(S4=2171cg;hort NFE2L2 Nuclear factor, erythroid 2 like 2
Age NLRP3 NACHT, LRR, and PYD domains-containing protein 3
< 65 years 235 65 ATP7B P-type ATPase gene
>65 years 141 50 ATP7A Copper transporter copper-transporting ATPase 1
Gender SLC31A1 Solute carrier family 31 member 1
Male 122 22 FDX1 Ferredoxin 1
Female 254 93 LIAS Lioyl synthase
Classification
1 55 NA LIPT1 Lipoyltransferase 1
G2 180 NA LIPT2 Lipoyltransferase 2
G3 123 NA DLD Dihydrolipoamide dehydrogenase
G4 13 NA DLAT dihydrolipoamide S-acetyltransferase
Unknown 5 NA PDHA1 Pyruvate dehydrogenase E1 component subunit alpha
Staging PDHB Pyruvate dehydrogenase beta subunit
I 175 55 MTFA1 Metal response element binding transcription factor 1
. 86 35 GLS Glutaminase
n 86 31
v 5 3 CDKN2A cyclin-dependent kinase inhibitor 2a
Unknown o4 DBT Dihydrolipoamide branched chain transacylase E2
T classification GCSH Glycine Cleavage System Protein H
T 185 NA DLST dihydrolipoamide S-succinyltransferase
T2 94 NA
T3 81 NA
T4 13 NA
X 1 NA
Unknown 2 NA
M classification
MO 272 NA
M1 4 NA
MX 100 NA
N classification
NO 257 NA
N1 4 NA
N2 114 NA
Unknown 1 NA
Overall survival
Dead 132 23
Survived 244 92

Cancer Genome Atlas (TCGA).
TCGA and Gene Expression Omnibus (GEO) databases (GSE76427)
databases.




