Low-dose ramosetron accelerates gastric emptying in the early phase: A crossover study in healthy volunteers using a continuous real-time 13C breath test (BreathID System)

ABSTRACT

Background/Aims: The aim of this study was to determine the correlation between low-dose ramosetron pre-treatment and gastric emptying using a novel, non-invasive technique for measuring gastric emptying, namely, the continuous real-time 13C breath test (BreathID system: Exalenz Bioscience Ltd., Israel).

Materials and Methods: Twelve healthy male volunteers participated in this randomized two-way crossover study. The subjects fasted overnight and were randomly assigned to receive the test meal (200 kcal per 200 mL) after an hour pre-treatment with 5 µg ramosetron or the test meal alone. Gastric emptying was monitored for 4 hours after administration of the test meal with the 13C-acetic acid breath test performed continuously using the BreathID system. Using Oridion Research Software (β version), T 1/2, T lag, GEC and the regression-estimated constants (β and κ) were calculated. The differences in the parameters measured at two time-points were analyzed using Wilcoxon’s signed-rank test.

Results: There was a significant difference in the calculated parameter β. No significant differences in the calculated parameters T 1/2, T lag, GEC or κ were observed between the test meal with ramosetron group and the test meal alone group.

Conclusion: This study showed that ramosetron pre-treatment enhances the early gastric emptying of liquid nutrients.

Keywords: Ramosetron, gastric emptying, breath test

INTRODUCTION

5-Hydroxytryptamine (5-HT) is present in the gastrointestinal tract, and it is mainly localized in the enterochromaffin (EC) cells of the mucosa (1). 5-HT mediates various physiological and pharmacological actions of the gastrointestinal system through the activation of four types of 5-HT receptors (2-4). Among them, 5-HT3 receptors are widely distributed in the enteric nervous system (5) and play important roles in the regulation of gastrointestinal motility (2,6-8). In fact, the potent and highly selective 5-HT3 receptor antagonist ondansetron accelerates gastric emptying (9,10) and inhibits cisplatin-induced emesis in animals and humans (10-14).

Some studies (15,16) have revealed an association between a stressful experience and disturbances in bowel function, indicating that gut function is affected by various stresses. In humans, stress commonly results in gastrointestinal disorders, such as irritable bowel syndrome (IBS) (17,18), in association with changes in gastrointestinal motility (15) and digestive transit (16). Recently, it was reported (19) that the selective 5-HT receptor antagonists ramosetron and granisetron inhibit restraint stress-induced defecation in rats, suggesting that endogenous 5-HT mediates stress-induced changes in bowel function through 5-HT3 receptor.

If ramosetron intake affects human gastric emptying, we would expect an antiemetic effect by oral intake. Therefore, we studied the effect of ramosetron on gastric emptying.
12C-acetic acid breath test

Twelve subjects participated in this randomized two-way crossover study. The two tests were conducted as follows: A, the subjects were assigned to receive a test meal one hour after taking a ramosetron 5 µg tablet; B: the subjects only took a test meal. The two test were separated by a washout period of at least 7 days. In both of the experiments, the tests were started after the patients had fasted overnight (at least 8 hours), and the breath test was performed while the subjects were seated for 4 hours (20-29).

The subjects participating in experiment A were asked to intake ramosetron 5 µg tablet before the meal intake. The test meal was a 200 kcal/200 mL liquid meal (Racol with milk flavor, Otsuka Pharmaceutical, Tokyo, Japan) containing 100 mg of 12C-acetic acid (Cambridge Isotope Laboratories, Boston, MA, USA), which the patients were requested to consume within 5 min. Subjects participating in experiment B took the breath test after meal intake. Breath samples were continuously collected via a nasal tube using the BreathID system (Exalenz Bioscience Ltd., Israel) at baseline before the test meal and following the completion of test meal ingestion (time 0) for up to 4 hours (20-29).

The data from the 13C-breath test were analyzed using Oridion BreathID software (Cary, NC, USA). The breath test parameters were shown in Table 1. In the two groups in the T 1/2, [(125.96: 81.67-184.68) vs. (116.18: 84.53-138.25) (p=0.04328)] (median: range, control versus ramosetron) or κ, [(0.5975: 0.2638-0.9265) vs. (0.6487: 0.4661-0.8872) (p=0.0844)] (Figure 4e). There was a significant difference between the two conditions in β [(1.7506: 1.1812-2.1595) vs. (1.9508: 1.4755-2.9269) (p=0.0229)] (Figure 1d).

DISCUSSION

This study examined changes in the rate of gastric emptying during the first 4 hours after pre-treatment with 5 µg ramosetron for an hour in healthy subjects. Gastric emptying was measured by the 13C-acetic breath test.

Ramosetron has the following pharmacokinetic data in a healthy man: T max 1.7±0.8 hours, C max 18.5±5.9 pg/mL, T 1/2 2.5±1.9 hours, and AUC 125.3±45.1 pg h/mL (30). Therefore, in all of the subjects, the drug concentration would be close to the maximum level while they were undergoing the breath test.

The 13C-acetic acid breath test is a noninvasive and well-established test for measuring the rate of gastric emptying of liquid meals and has been shown to be significantly correlated with the results of scintigraphy (31-36). The subjects ingested 13C-labeled acetic acid, which passes through the stomach and is absorbed in the duodenum and upper small bowel. The 13C-labeled acetic acid is then metabolized in the liver and excreted from the lung as 13CO2. This pathway enables gastric emptying to be measured in a noninvasive manner. The BreathID system allows continuous evaluation of gastric emptying. For patients, it can serve as real-time breath analysis. It also decreases the examination time and alleviates patient discomfort. Continuous analysis also provides quick, immediate results (20-29).

In rats, it has been demonstrated that the inhibition of gastric emptying induced by glucose in the intestine is mediated by...
5-HT3 receptor. Glucose-induced inhibition of proximal gastric motility, which is part of the gastroduodenal motility pattern predictive of decreased gastric emptying, was also inhibited by ondansetron, a 5-HT3 receptor antagonist. In addition, vagal and spinal afferents innervating the duodenum, which mediate the intestinal feedback inhibition of gastric emptying in response to the digestive products of dietary carbohydrates, express 5-HT3 receptor. Intraluminal glucose inhibits gastric emptying by releasing 5-HT from EC cells and activating 5-HT3 receptor on the peripheral terminals of vagal and spinal afferents in the duodenum (37, 38). In the present study, ramosetron pre-treatment enhanced the early gastric emptying of liquid nutrients in healthy male volunteers. It is suggested that as a 5-HT3 receptor antagonist, ramosetron inhibits 5-HT3 activation; therefore, gastric emptying was not inhibited in the early phase despite stimulation by glucose within the liquid meal. We used 200 mL of Racol in this study, which contains 31.24 g of carbohydrate. We hypothesize the following mechanism: after the early acceleration of gastric emptying produced by ramosetron, the liquid meal, whose excretion from the stomach into the duodenum was accelerated, provided feedback to inhibit gastric emptying by releasing 5-HT from EC cells and activating 5-HT3 receptor on the peripheral terminals of vagal and spinal afferents in the duodenum.

Two effects of the ingested liquid meal are accelerated early gastric emptying and subsequent feedback from the duodenum. It was previously reported that postprandial water intake inhibits gastric antral motility along with an increase in cholecystokinin (CCK) in normal subjects. In that report, it was assumed that the rapid increase in CCK after water intake was initiated by a feedback mechanism related to the inflow of fatty chyme into the duodenum, which inhibits gastric antral activity. This duodeno-gastric interaction is known as the “duodenal break” (39). In a previous study, there were no significant differences between the test meal with ramosetron group and the test meal alone group in T 1/2, T lag, GEC, or κ. However, there was a significant difference in the calculated parameter β. We theorize that the acceleration of early gastric emptying and the duodenal break balanced each other out.

In Japan, ramosetron is only administered to male patients because it was demonstrated that ramosetron did not have significant effect for female patients Irritable Bowel Syndrome (IBS) (40). So we studied only male volunteer in this study.

Table 1. Comparison of breath test parameters

<table>
<thead>
<tr>
<th></th>
<th>Ramsetron</th>
<th>Control</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 1/2</td>
<td>125.96</td>
<td>116.18</td>
<td>0.4328</td>
</tr>
<tr>
<td>T lag</td>
<td>56.905</td>
<td>59.785</td>
<td>0.0712</td>
</tr>
<tr>
<td>GEC</td>
<td>3.605</td>
<td>3.59</td>
<td>0.0229</td>
</tr>
<tr>
<td>β</td>
<td>1.7506</td>
<td>1.9508</td>
<td>0.0229</td>
</tr>
<tr>
<td>κ</td>
<td>0.5975</td>
<td>0.6487</td>
<td>0.0844</td>
</tr>
</tbody>
</table>

Median (range). T 1/2: the time required for emptying 50% of the labeled meal (min); T lag, the analog to the scintigraphy lag time for 10% emptying of the labeled meal (min); GEC, the gastric emptying coefficient; β and κ, the regression-estimated constants.

Figure 1 a-e. No significant differences were found in the T 1/2 (a), T lag (b), GEC (c) or κ (e) between the 2 study conditions. The β constant was higher after the administration of a test meal plus Low-dose ramosetron than after the test meal alone (p=0.0229, Wilcoxon signed-rank test) (d). T 1/2, the time required for emptying 50% of the labeled meal (min); T lag, the analog to the scintigraphy lag time for 10% emptying of the labeled meal (min); GEC, the gastric emptying coefficient; β and κ, the regression-estimated constants.

Inoue et al. Ramosetron and gastric emptying

Ramosetron Control p value
T 1/2 (min) 170 160 150 140 130 120 110 100 90 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 100 110 120 130 140 150 160 170 *Control *Control *Ramosetron *Ramosetron *Ramosetron *Ramosetron *Ramosetron *Ramosetron *Ramosetron *Ramosetron

β

κ

GEC

Ramosetron Control p value
T 1/2 (min) 170 160 150 140 130 120 110 100 90 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 100 110 120 130 140 150 160 170 *Control *Control *Ramosetron *Ramosetron *Ramosetron *Ramosetron *Ramosetron *Ramosetron *Ramosetron *Ramosetron

β

κ

GEC
Inoue et al. Ramosetron and gastric emptying

Low dose Ramosetron effected early gastric emptying to accelerate, but looking at overall gastric emptying phase, there was no significant change as between with low dose ramosetron intake and without intake. We got a useful result that the male patients with IBS can take ramosetron orally without any anxieties about gastric emptying to bring neither excessive velocity nor too much delaying.

Ethics Committee Approval: Ethics committee approval was received for this study from the ethics committee of Yokohama City University.

Informed Consent: Written informed consent was obtained from patients who participated in this study.

Peer-review: Externally peer-reviewed.

Acknowledgements: Special thanks for healthy volunteers.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: Masahiko Inamori: Research funding, Abbott Japan Co., LTD.

REFERENCES

2. Buchheit KH, Engel G, Muschler E. and Richardson BP. Study of the contractile effect of 5-hydroxy tryptamine (5-HT) in the isolated longitudinal muscle strip from guinea-pig ileum. Naunyn Schmiedebergs Arch Pharmacol 1985; 32: 36-41. [CrossRef]

4. Dumanis A, Sebben M, Bockaert J. The gastrointestinal prokinetic benzamide derivatives are agonists at the classical 5-HT3 receptor positively coupled to adenylate cyclase in neurons. Naunyn Schmiedebers Arch Pharmacol 1989; 340: 403-10. [CrossRef]

5. Hendriks R, Bornstein JC, Furnness JB. Evidence for two types of 5-hydroxytryptamine receptor on secretomotor neurons of the guinea-pig ileum. Naunyn Schmiedebers Arch Pharmacol 1989; 339: 409-14. [CrossRef]

13. King FD, Sanger GJ. 5-HT3 receptor antagonists. Drugs Future 1989; 14: 875-89. [CrossRef]

38. Raybould HE, Glatzle J, Robin C. Expression of 5HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying. Am J Physiol Gastrointest Liver Physiol 2003; 284: G367-72. [CrossRef]
