NADPH oxidase p22phox gene expression in ulcerative colitis

Neşe Bülbül¹, Elif Pala², Yusuf Ziya İğci³, Bülent Gögебakan¹, Serdar Öztuzcu², Beyhan Cengiz⁴, Recep Bayraktar², Muhammet Sait Dağ⁵, Musa Aydınlı⁵
¹Department of Internal Medicine, Nizip State Hospital, Gaziantep, Turkey
²Department of Medical Biology, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
³Department of Medical Biology, Mustafa Kemal University Faculty of Medicine, Gaziantep, Turkey
⁴Department of Physiology, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
⁵Department of Gastroenterology, Gaziantep University Faculty of Medicine, Gaziantep, Turkey

ABSTRACT

Background/Aims: Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which catalyzes the formation of reactive oxygen species (ROS) in phagocytic cells, has five subunits: p67phox (“phox” refers to “phagocyte oxidase”), p47phox, p40phox, p22phox, and gp91phox (catalytic subunit). Oxidative stress resulting from the accumulation of ROS and/or defective removal of ROS by antioxidants has detrimental effects on cellular functions and may contribute to chronic inflammation. Disruption of the colonic mucosa due to the dysregulation of antioxidants or transformation enzymes may play a role in the pathogenesis of ulcerative colitis (UC) and influence the clinical features of this disease. In this study, we examined the expression of the gene encoding NADPH oxidase subunit p22phox cytochrome b-245, alphapolypeptidein the colonic mucosa to test its possible contribution in the pathogenesis of UC.

Materials and Methods: Expression levels of mRNA in the inflamed and non-inflamed colonic mucosa (determined using colonoscopy) of 22 patients with UC and in the normal mucosa of 22 healthy controls were analyzed using real-time polymerase chain reaction.

Results: Expression levels of mRNA were not significantly different between patients with inflamed and non-inflamed colonic mucosa (p>0.05) and between patients with inflamed colonic mucosa and healthy controls (p>0.05).

Conclusion: Although our data suggest that expression of the gene encoding p22phox is not associated with chronic inflammation in patients with UC, other mechanisms can affect oxidative stress in these patients.

Keywords: Ulcerative colitis, oxidative stress, inflammation, NADPH oxidase, p22phox

INTRODUCTION

Ulcerative colitis (UC) is a chronic, non-specific inflammation of the colon with an unidentified pathogenesis. Like most complex diseases, UC results from a combination of various factors such as environmental triggers and immune responses that contribute to chronic intestinal inflammation in genetically susceptible individuals (1,2).

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was first described in phagocytic cells as an enzyme involved in the generation of reactive oxygen species (ROS) (3). NADH and NADPH oxidation by the granules of resting and phagocytizing cells). This enzyme comprises two membrane-bound proteins (p22phox and gp91phox), three cytosolic proteins (p67phox, p47phox, and p40phox), and a small G-protein Rac. Gp91phox and p22phox form a heterodimer that is bound to the plasma membrane. This complex is called flavocytochrome b558 because it shows maximum absorption at 558nm and is catalytically inactive in resting cells. It moves toward cytosolic subunits of the cell membrane and forms an active complex with NADPH oxidase (4). ROS levels in cells should be low because cells participate in several processes, including regulatory mechanisms, intracellular signaling, and
host defense against pathogens. ROS are highly reactive molecules because of the presence of unpaired electrons; hence, increased ROS levels are toxic and damage cell membranes through lipid peroxidation and proteins by exerting oxidative damage (5). ROS can damage the colonic epithelium and increase mucosal permeability. Once the intestinal epithelial barrier is damaged, bacterial antigens can pass through the sterile submucosal layers and initiate a destructive cascade of immune response (6,7). Oxidative stress occurs when there is an imbalance between ROS production and their removal by antioxidants. Oxidative stress is a potential etiological factor in UC because ROS are known to play a role in inflammation (8).

Changes in the expression of NADPH oxidase subunit p22phox—may be one of the reasons for mucosal inflammation in UC. In this study, we examined the expression of the gene encoding NADPH oxidase subunit p22phox cytochrome b-245, alphapoleptide (CYBA) in the colonic mucosa to test its possible contribution in the pathogenesis of UC. To the best of our knowledge, expression of the gene encoding p22phox has not been studied previously in patients with UC.

MATERIALS AND METHODS

This study included 22 patients with UC and 22 healthy controls who were enrolled at the Department of Gastroenterology, Faculty of Medicine, University of Gaziantep, between May and December 2010. UC was diagnosed based on clinical, endoscopic, and histopathological criteria. The mean age of nine women and 13 men with UC was 39.22±14.54 and 42.08±16.39 years, respectively, while that of nine women and 13 men in the control group was 53.66±15.34 and 48.15±14.76 years, respectively. Before sampling, six patients with UC received no medication, 11 received 5-aminosalicylic acid (5-ASA) compounds alone, four received steroids, and one received azathioprine in combination with 5-ASA compounds. Of the 22 patients with UC, 12 had extensive colitis, eight had distal colitis, and two had proctitis. Written informed consent was obtained from all the patients and healthy controls. This study was approved by the local ethics committee and was conducted in accordance with

Table 1. Characteristics and clinical features of patients with UC

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Age/ gender</th>
<th>UC extension</th>
<th>Endoscopic activity index</th>
<th>UC disease activity index</th>
<th>Treatment</th>
<th>CRP (2nd values)</th>
<th>P22phox inflamed mucosa (2nd values)</th>
<th>P22phox Non-inflamed mucosa (2nd values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24, M</td>
<td>Distal</td>
<td>12</td>
<td>8</td>
<td>Sulfasalazine and mesalazine</td>
<td>3</td>
<td>290.0</td>
<td>310.8</td>
</tr>
<tr>
<td>2</td>
<td>59, M</td>
<td>Extensive</td>
<td>12</td>
<td>12</td>
<td>Mesalazine and budesonide</td>
<td>21</td>
<td>1499.2</td>
<td>1217.7</td>
</tr>
<tr>
<td>3</td>
<td>53, M</td>
<td>Extensive</td>
<td>10</td>
<td>10</td>
<td>Mesalazine</td>
<td>40</td>
<td>2778.3</td>
<td>8599.2</td>
</tr>
<tr>
<td>4</td>
<td>20, F</td>
<td>Extensive</td>
<td>9</td>
<td>8</td>
<td>-</td>
<td>23</td>
<td>652.5</td>
<td>3191.4</td>
</tr>
<tr>
<td>5</td>
<td>47, M</td>
<td>Extensive</td>
<td>12</td>
<td>6</td>
<td>Mesalazine and azathiopine</td>
<td>21</td>
<td>2702.3</td>
<td>1082.3</td>
</tr>
<tr>
<td>6</td>
<td>40, F</td>
<td>Extensive</td>
<td>6</td>
<td>5</td>
<td>Mesalazine</td>
<td>6</td>
<td>43.1</td>
<td>448.8</td>
</tr>
<tr>
<td>7</td>
<td>23, F</td>
<td>Extensive</td>
<td>12</td>
<td>12</td>
<td>-</td>
<td>20</td>
<td>1024.0</td>
<td>333.1</td>
</tr>
<tr>
<td>8</td>
<td>33, F</td>
<td>Distal</td>
<td>7</td>
<td>4</td>
<td>-</td>
<td>5</td>
<td>8.0</td>
<td>138545</td>
</tr>
<tr>
<td>9</td>
<td>33, M</td>
<td>Distal</td>
<td>8</td>
<td>10</td>
<td>Mesalazine</td>
<td>6</td>
<td>1807.7</td>
<td>3983.9</td>
</tr>
<tr>
<td>10</td>
<td>54, F</td>
<td>Distal</td>
<td>5</td>
<td>7</td>
<td>Mesalazine</td>
<td>5</td>
<td>11190.6</td>
<td>17559.9</td>
</tr>
<tr>
<td>11</td>
<td>43, F</td>
<td>Extensive</td>
<td>3</td>
<td>4</td>
<td>Mesalazine</td>
<td>13</td>
<td>6888.6</td>
<td>1136.2</td>
</tr>
<tr>
<td>12</td>
<td>33, M</td>
<td>Extensive</td>
<td>7</td>
<td>10</td>
<td>-</td>
<td>3</td>
<td>1370.0</td>
<td>6936.5</td>
</tr>
<tr>
<td>13</td>
<td>29, M</td>
<td>Extensive</td>
<td>10</td>
<td>8</td>
<td>Mesalazine and methylprednisolone</td>
<td>6</td>
<td>15825.9</td>
<td>278.2</td>
</tr>
<tr>
<td>14</td>
<td>79, M</td>
<td>Extensive</td>
<td>3</td>
<td>7</td>
<td>Mesalazine and methylprednisolone</td>
<td>11</td>
<td>3666.0</td>
<td>22693.6</td>
</tr>
<tr>
<td>15</td>
<td>52, F</td>
<td>Distal</td>
<td>9</td>
<td>10</td>
<td>Mesalazine</td>
<td>3</td>
<td>1910.8</td>
<td>4672.5</td>
</tr>
<tr>
<td>16</td>
<td>42, M</td>
<td>Distal</td>
<td>8</td>
<td>8</td>
<td>Mesalazine</td>
<td>3</td>
<td>494.5</td>
<td>77935.9</td>
</tr>
<tr>
<td>17</td>
<td>34, M</td>
<td>Distal</td>
<td>10</td>
<td>3</td>
<td>Sulfasalazine</td>
<td>58</td>
<td>220436.0</td>
<td>1541.3</td>
</tr>
<tr>
<td>18</td>
<td>21, M</td>
<td>Proctitis</td>
<td>10</td>
<td>6</td>
<td>-</td>
<td>3</td>
<td>378517.4</td>
<td>3565.7</td>
</tr>
<tr>
<td>19</td>
<td>57, M</td>
<td>Distal</td>
<td>10</td>
<td>4</td>
<td>Mesalazine</td>
<td>3</td>
<td>18179.1</td>
<td>9741.9</td>
</tr>
<tr>
<td>20</td>
<td>36, M</td>
<td>Extensive</td>
<td>8</td>
<td>6</td>
<td>Mesalazine</td>
<td>28</td>
<td>7332.0</td>
<td>5330.3</td>
</tr>
<tr>
<td>21</td>
<td>27, F</td>
<td>Extensive</td>
<td>2</td>
<td>5</td>
<td>Mesalazine and fluocortolone</td>
<td>3</td>
<td>1105.1</td>
<td>85.6</td>
</tr>
<tr>
<td>22</td>
<td>61, F</td>
<td>Proctitis</td>
<td>10</td>
<td>4</td>
<td>-</td>
<td>5</td>
<td>31000.4</td>
<td>903.8</td>
</tr>
</tbody>
</table>

∆Ct: gene expression levels in each sample normalized to those of GAPDH in a given sample; CRP: c-reactive protein; UC: ulcerative colitis
the Declaration of Helsinki. Severity of UC was graded according to Rachmilewitz endoscopic activity index. The characteristics and clinical features of patients with UC are presented in Table 1.

Total RNA was isolated from samples obtained from colonic biopsy by using High Pure isolation kit (Cat no.12033674001; Roche, Mannheim, Germany) according to manufacturer’s instructions.

The isolated mRNA was transcribed into cDNA by using random hexamers and AMV reverse transcriptase (CatNo.11483188001; Roche, Mannheim, Germany) according to manufacturer’s instructions.

Data were statistically analyzed using Statistical Package for Social Science (SPSS) program (SPSS for windows, version 14.0).

Chi-square test was used to compare the groups. Qualitative data were expressed as frequency and percentage, and quantitative data were expressed as mean and standard deviation. Student’s t-test and Mann-Whitney U test were used to compare two groups. P values less than 0.05 were considered statistically significant.

RESULTS

Expression levels of the gene encoding p22phox were not significantly different between patients with inflamed (32214±19230 2^\(\Delta C_t\)) and non-inflamed colonic mucosa (14095±69062^\(\Delta C_t\); p=0.80), between patients with inflamed colonic mucosa (114644±78798 2^\(\Delta C_t\)) and healthy controls (p=0.60), and between patients with non-inflamed mucosa and healthy controls (p=0.40). These expression levels are presented at Table 2 and Figure 1.

No statistically significant differences were observed between patients with inflamed and non-inflamed colonic mucosa with
Expression of the gene encoding p22phox was not significantly different between six patients with inflamed (68762±62147 2ΔCt) and non-inflamed mucosa (25579±22613 2ΔCt) who did not receive any treatment before sampling (p=0.25). No correlation was observed between expression of the gene encoding p22phox and UC among 16 patients with inflamed (18509±13533 2ΔCt) and non-inflamed mucosa (9788±4833 2ΔCt) who received treatment before sampling. Moreover, no difference was observed between patients with inflamed (6199±2588/31789±27048 2ΔCt) and non-inflamed mucosa (4251±1871/31786±1774 2ΔCt) with re -

respect to the three colitis types (extensive, distal, and proctitis).

DISCUSSION

Ulcerative colitis is characterized by the confluent inflammation of the colonic mucosa that extends from the rectum to the proximal colon. Although the cause of colonic inflammation in UC is not completely established, substantial evidence suggests that it is associated with elevated production of ROS. Experiments in both animals and humans have shown that overproduction of ROS and consequent oxidative stress play a critical role in the pathophysiology of UC (9-11).

Nicotinamide adenine dinucleotide phosphate oxidases are a major source of intracellular ROS (4). P22phox is a core component of this enzyme and plays a key role in the production of ROS. P22phox is the α-subunit of cytochrome b558, which is involved in the electron transport from NADPH to molecular oxygen (12). This study assessed the association between oxidative stress and expression of the gene encoding p22phox as the cause of inflammation in UC. Expression of the gene encoding p22phox has not been analyzed in UC thus far.

To the best of our knowledge, the only study investigating the association between UC and the gene encoding p22phox based on polymorphism C242T in this gene. The C242T polymorphism substitutes amino acid histidine with tyrosine at position 72 in p22phox. Presence of the C242T polymorphism in the gene encoding p22phox significantly reduces superoxide production in human neutrophils (13). However, no association has been observed between this polymorphism and different clinicopathological features of UC, such as gender, age, age of onset, clinical type, extension of colitis, and response to treatment (14). Associations between the C242T polymorphism and other diseases, including coronary artery disease, cerebrovascular disease, and non-diabetic nephropathy have been observed (15-17).

A low level of ROS is necessary for several processes within the cell; it especially plays important physiological roles in innate immunity against pathogenic microorganisms encountered in the gut. However, increased levels of ROS are toxic and can damage cell membranes through lipid peroxidation and proteins through oxidative damage. Thus, there should be a balance between ROS production and oxidative defense within cells. When this balance is disrupted, destructive effects of ROS may appear (5). In response to oxidative stress, tissues produce more antioxidants. Moreover, severe oxidative stress depletes body’s antioxidant resources and reduces its ability to produce more antioxidants, thus lowering antioxidant levels (18). Increased levels of ROS and biomarkers of oxidative stress such as lipid peroxidation products (reactive aldehydes, f2-isoprostanes, etc.) and protein modifications (protein carbonyls, etc.) are present in the colonic mucosa of patients with UC (19-21).

Correspondingly, levels of antioxidants such as glutathione, coenzyme Q10, glutathione-S-transferase, superoxide dismutase, catalase, paraoxonase-1, and metallothionein decrease in patients with UC compared with those in normal individuals (22,23). Antioxidant levels also decrease in the peripheral red blood cells of patients with active UC (24) (Krzystek-Korpacka, 2010, Impaired erythrocyte antioxidant defense in active inflammatory bowel disease: impact of anemia and treatment). Alagozlu et al. quantified advanced oxidation protein products (AOPPs) and total thiol levels as markers of oxidative protein damage, malondialdehyde level as a marker of lipid peroxidation, and myeloperoxidase activity as a marker of neutrophil activation in patients with UC. They found that increased levels of plasma AOPP support the presence of oxidative stress and protein oxidation in patients with UC and that this marker may be used as a simple serum marker to assess disease activity and to predict the disease severity and probably response to therapy (25) (Alagozlu, 2013, Increased plasma levels of advanced oxidation protein products (AOPP) as a marker for oxidative stress in patients with active ulcerative colitis) (Alagozlu, 2013, Increased plasma levels of advanced oxidation protein products (AOPP) as a marker for oxidative stress in patients with active ulcerative colitis) (Alagozlu et al. quantified advanced oxidation protein products (AOPPs) and total thiol levels as markers of oxidative protein damage, malondialdehyde level as a marker of lipid peroxidation, and myeloperoxidase activity as a marker of neutrophil activation in patients with UC. They found that increased levels of plasma AOPP support the presence of oxidative stress and protein oxidation in patients with UC and that this marker may be used as a simple serum marker to assess disease activity and to predict the disease severity and probably response to therapy (25) (Alagozlu, 2013, Increased plasma levels of advanced oxidation protein products (AOPP) as a marker for oxidative stress in patients with active ulcerative colitis) (Alagozlu, 2013, Increased plasma levels of advanced oxidation protein products (AOPP) as a marker for oxidative stress in patients with active ulcerative colitis) (Alagozlu, 2013, Increased plasma levels of advanced oxidation protein products (AOPP) as a marker for oxidative stress in patients with active ulcerative colitis). Therefore, some conflicting results have been obtained regarding severity of the disease and levels of antioxidants or oxidative stress biomarkers. Although majority of studies have failed to show any significant correlation between the severity of the disease and levels of antioxidants or oxidative stress biomarkers, few studies have demonstrated this correlation, even with the extension of intestinal inflammation.

Our results did not show differential expression of the gene encoding p22phox in patients within flamed or non-inflamed co-
Bülbül et al. P22phox expression in ulcerative colitis

Ionic mucosa compared with that in healthy controls. In addition, no increase in the expression of this gene in the inflamed colonic mucosa suggested that other mechanisms might affect the expression of this gene. There are no data in literature on this interaction. However, because majority of our patients used 5-ASA, an antioxidant, before inclusion in the study, we feel that this treatment may have influenced the expression of p22phox. However, it is conflicting to our idea that there was no significant difference concerning the p22phox gene expression between the treated and untreated groups. Finally, we observed no significant correlation between the indices of severity and expression of the gene encoding p22phox in patients with UC contradicted our hypothesis. Although our results suggested that expression of this gene was not associated with chronic inflammation in patients with UC, further studies with larger sample size are needed to understand the factors involved in UC development and expression of p22phox.

Ethics Committee Approval: Ethics committee approval was received for this study from Gaziantep University Ethical Committee.

Informed Consent: Written informed consent was obtained from patients who participated in this study.

Peer-review: Externally peer-reviewed.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

REFERENCES
2. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448: 427-34. [CrossRef]
3. Rossi F, Zatti M. Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia 1964; 20: 21-3. [CrossRef]