Adverse factors responsible for below-normal platelet count after laparoscopic splenectomy and azygoportal disconnection

Dou-Sheng Bai1*, Wen-Yu Shao2*, Chi Zhang1, Ping Chen1, Sheng-Jie Jin1, Guo-Qing Jiang1

1Department of Hepatobiliary Surgery, Clinical Medical College of Yangzhou University, Yangzhou, China
2Key Laboratory of Living Donor Liver Transplantation, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China

ABSTRACT
Background/Aims: Splenectomy is regarded as an effective curative treatment for thrombocytopenia caused by hypersplenism in patients with cirrhosis. However, in clinical practice, thrombocytopenia is not resolved by splenectomy in all patients. This study aimed to evaluate the adverse factors responsible for platelet (PLT) counts below the normal lower limit following laparoscopic splenectomy and azygoportal disconnection (LSD).

Materials and Methods: We retrospectively evaluated the outcomes of 123 cirrhotic patients with portal hypertensive bleeding and secondary hypersplenism, who underwent LSD and who had PLT counts <125×109/L (non-normal group) or ≥125×109/L (normal group) at the postoperative month (POM) 3, between April 2014 and March 2017.

Results: Sixteen patients (13.01%) had PLT counts <125×109/L at POM 3 after LSD, while the remaining 107 patients had normal counts. We analyzed 25 perioperative variables in both groups. A logistic multivariate regression identified age (relative risk [RR] 1.082, 95% confidence interval [CI] 1.018-1.150) and longitudinal spleen diameter (RR 0.977, 95% CI 0.955-1.000) as significant independent factors for the PLT count <125×109/L at POM 3. Bivariate correlation analysis showed that age >50 years and longitudinal spleen diameter ≤160 mm were threshold values for an increased risk of the PLT count <125×109/L at POM 3 after LSD.

Conclusion: Age was an independent positive predictor and longitudinal spleen diameter an independent negative predictor of PLT count <125×109/L at POM 3 after LSD.

Keywords: Platelet, splenectomy, laparoscopy, cirrhosis, portal hypertension

INTRODUCTION
The high incidences of chronic hepatitis B and C virus infections worldwide are associated with increased incidences of hypersplenism, with splenomegaly secondary to cirrhotic portal hypertension. Splenectomy is regarded as a first-line curative treatment for thrombocytopenia and leukopenia resulting from hypersplenism in patients with cirrhosis. It also has been shown to improve coagulation and liver function, and it plays an important role in the surgical strategy for hepatocellular carcinoma by alleviating thrombocytopenia in cirrhotic patients (1-5). Furthermore, the Hassab procedure (splenectomy and azygoportal disconnection) is a common treatment strategy for patients suffering from hypersplenism together with esophagogastric variceal bleeding in Asia.

Splenectomy is always followed by increased blood viscosity as a result of high platelet (PLT) and leukocyte counts secondary to the absence of splenic breakdown. Previous studies reported that the mean postoperative PLT count usually increased to 231-399×109/L after splenectomy or the Hassab procedure (6-8), which was within normal limits. However, thrombocytopenia is not resolved by splenectomy in all patients in clinical practice; some patients maintain a postoperative PLT count below the normal lower limit (125×109/L) despite splenectomy, suggesting that this procedure may not be suitable in all cases. This may result in patient dissatisfaction, and even medical violence, in some countries (9,10). It is therefore necessary to determine the factors responsible for this treatment failure and to identify those patients at risk of maintaining a low postoperative PLT. We aimed to identify the adverse factors associated with a PLT count below the normal lower limit after splenectomy. We conducted a retrospective study to compare the demographic, preoperative, and intraoperative characteristics between pa-
tients with PLT counts ≥125×10^9/L and those with counts <125×10^9/L at postoperative month (POM) 3 after laparo-
soscopic splenectomy and azygoportal disconnection (LSD) for portal hypertensive bleeding and secondary hy-
persplenism.

MATERIALS AND METHODS

Patients

Patients were included in the study if they met the fol-
lowing criteria: diagnosed with cirrhosis of any etiology;
aged 18–80 years; had a history of esophageal/gastric var-
iceal bleeding and secondary hypersplenism; liver func-
tion Child–Pugh A or B; hypersplenism with a PLT count
<100×10^9/L; no portal vein system thrombosis proved by
ultrasonographic evaluation on admission; underwent
LSD; and completed a 3-month follow-up.

Patients were excluded for the following reasons: any
malignancy; hypercoagulable state not resulting from
liver disease; management with oral contraceptives, an-
ticoagulation agents, or antiplatelet agents; uncontrolled
hypertension or peptic ulcer disease; hemorrhagic stroke;
or human immunodeficiency virus infection.

A total of 123 patients satisfied the inclusion criteria
between April 2014 and March 2017, and they were di-
agnosed with esophageal/gastric variceal bleeding and sec-
ondary hypersplenism due to cirrhotic portal hyper-
tension in our department. All the patients underwent
LSD. All operations were performed by the same experi-
enced surgical team. The LSD procedure was carried out
as described previously (11,12). The clinical characteristics
of the patients were analyzed retrospectively. This study
was approved by the Ethics Committee of our institution.
Written informed consent was provided by each patient.
The methods were performed in accordance with the rel-
vant guidelines and regulations.

Clinical data were collected retrospectively. Preoperative
patient data included age, gender, etiology of cirrhosis,
hypertension, diabetes mellitus, Child–Pugh classifica-
tion, the longitudinal spleen diameter, the main portal
vein diameter, splenelous, hemoglobin levels, the PLT
count, prothrombin time, and levels of total bilirubin,
plasma albumin, alanine aminotransferase, blood urea ni-
trogen, creatinine, laminin, precollagen III, collagen IV, and
hyaluronidase. Intraoperative data included the operation
time, intraoperative blood loss, and intraoperative blood
transfused. Postoperative data included the PLT count
on postoperative days (POD) 7 and 10, and at POM 1 and
3. Patients with a PLT count at POM 3 below the normal
lower limit (125×10^9/L) were classified as the non-normal
group (n=16) and those with a PLT count ≥125×10^9/L
were placed in the normal group (n=107).

Statistical analysis

All statistical analyses were performed using the SPSS
22.0 software (IBM Corp.; Armonk, NY, USA). p values
<0.05 were considered statistically significant. Data are
presented as mean (standard deviation), median (range),
or percentage. Group means were compared using Student’s t-tests or Mann–Whitney U tests, as appropriate.
Percentages were compared using χ² tests. Bivariate cor-
relation was used to determine the significance levels of
patient age and longitudinal spleen diameter. Multivariate
regression analysis was performed with forward stepwise
elimination of nonsignificant variables.

RESULTS

Baseline patient characteristics

The non-normal group included 16 (13.01%) patients (6
males, 10 females; mean age, 60.8±8.2 years; range, 44–
73 years) with portal hypertensive bleeding and sec-
ondary hypersplenism due to liver cirrhosis. These patients
had been admitted because of variceal bleeding. All 16
patients suffered from splenomegaly, with a longitudinal
spleen diameter of 99–207 mm. The non-normal group
included the remaining 107 (86.99%) patients (72 males,
35 females, mean age, 52.0±10.2 years; range, 21–77)
with PLT counts ≥125×10^9/L at POM 3. These patients
were also admitted because of variceal bleeding and had
spleen diameters of 132–300 mm.

Adverse factors responsible for below-normal platelet
count

The 25 analyzed variables in the non-normal and normal
groups are shown in Table 1. The variables shown to dif-
fer significantly between the two groups were gender,
age, and longitudinal spleen diameter. These significant
variables were regarded as independent variables, and
PLT count <125×10^9/L at POM 3 as a dependent variable.
Multivariate logistic regression identified age (relative risk
[RR] 1.082, 95% confidence interval [CI] 1.018–1.150) and
longitudinal spleen diameter (RR 0.977, 95% CI 0.955–
1.000) as significant variables affecting the risk of PLT
count <125×10^9/L at POM 3 (Table 2).

Postoperative PLT count changes with time

The mean PLT count changes from admission to POM
3 fluctuated widely (p<0.001; Figure 1), with the peak
The mean PLT count on POD 10 (383.5±186.9×10⁹/L) was significantly higher than on POD 7 (271.1±135.6×10⁹/L), POM 1 (276.1±154.5×10⁹/L), or POM 3 (245.9±115.0×10⁹/L) (all p<0.001). There was no significant difference in the mean PLT count between POM 1 and POM 3 (p>0.05).

Association between age, longitudinal spleen diameter, and PLT count <125×10⁹/L at POM 3

Bivariate correlation analysis was performed to analyse the relationship between these significant variables and the occurrence of a PLT count <125×10⁹/L at POM 3. The variables were age and longitudinal spleen diameter. Age and longitudinal spleen diameter were divided into groups. According to the correlation coefficient, the threshold values for a PLT count <125×10⁹/L were age >50 years (Table 3) and longitudinal spleen diameter ≤160 mm (Table 4).

Patients were divided into the following age groups: 21-35 years, 36-50 years, 51-65 years, and 66-80 years. The PLT count at POM 3 decreased gradually with increasing age.

Table 1. Demographic, preoperative, and intraoperative characteristics of patients with platelet counts ≥ or <125×10⁹/L at the postoperative month 3

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-normal (n=16)</th>
<th>Normal (n=107)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (female/male)</td>
<td>10/6</td>
<td>35/72</td>
<td>0.021</td>
</tr>
<tr>
<td>Age (years)</td>
<td>60.8±8.2</td>
<td>52.0±10.2</td>
<td>0.001</td>
</tr>
<tr>
<td>Etiology</td>
<td>11/1/1/1/1/1/1</td>
<td>72/7/4/3/9/12</td>
<td>0.957</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3</td>
<td>15</td>
<td>0.904</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>3</td>
<td>16</td>
<td>0.983</td>
</tr>
<tr>
<td>Child-Pugh classification (A/B)</td>
<td>10/6</td>
<td>60/47</td>
<td>0.628</td>
</tr>
<tr>
<td>WBC (×10⁹/L)</td>
<td>3.17±1.87</td>
<td>3.00±2.43</td>
<td>0.779</td>
</tr>
<tr>
<td>Hb (g/L)</td>
<td>109.1±17.4</td>
<td>103.1±28.2</td>
<td>0.250</td>
</tr>
<tr>
<td>PLT (×10⁹/L)</td>
<td>40.2±17.1</td>
<td>46.7±14.7</td>
<td>0.110</td>
</tr>
<tr>
<td>PT (s)</td>
<td>15.93±1.59</td>
<td>16.29±1.96</td>
<td>0.484</td>
</tr>
<tr>
<td>TBIL (µmol/L)</td>
<td>23.74±9.87</td>
<td>22.50±11.82</td>
<td>0.692</td>
</tr>
<tr>
<td>ALB (g/L)</td>
<td>37.13±4.47</td>
<td>39.14±6.15</td>
<td>0.231</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>30.3±21.2</td>
<td>27.7±16.6</td>
<td>0.586</td>
</tr>
<tr>
<td>BUN (mmol/L)</td>
<td>6.03±2.21</td>
<td>5.65±2.11</td>
<td>0.507</td>
</tr>
<tr>
<td>Cr (µmol/L)</td>
<td>73.12±19.32</td>
<td>73.78±20.36</td>
<td>0.903</td>
</tr>
<tr>
<td>Splenous</td>
<td>0</td>
<td>4</td>
<td>0.975</td>
</tr>
<tr>
<td>Longitudinal spleen diameter (mm)</td>
<td>165.1±29.7</td>
<td>184.8±27.8</td>
<td>0.010</td>
</tr>
<tr>
<td>Main portal vein diameter (mm)</td>
<td>13.3±2.8</td>
<td>14.3±2.5</td>
<td>0.112</td>
</tr>
<tr>
<td>Laminin (µg/L)</td>
<td>46.06</td>
<td>46.88</td>
<td>0.682</td>
</tr>
<tr>
<td>(9.39-1000)</td>
<td></td>
<td>(2.0-1000)</td>
<td></td>
</tr>
<tr>
<td>Precollagen III (µg/L)</td>
<td>61.28±39.86</td>
<td>52.32±28.48</td>
<td>0.270</td>
</tr>
<tr>
<td>Collagen IV (µg/L)</td>
<td>55.98±30.21</td>
<td>57.71±34.02</td>
<td>0.847</td>
</tr>
<tr>
<td>Hyaluronidase (µg/L)</td>
<td>189.18±131.49</td>
<td>165.95±159.43</td>
<td>0.580</td>
</tr>
<tr>
<td>Operation time (min)</td>
<td>162.8±48.0</td>
<td>174.8±42.4</td>
<td>0.303</td>
</tr>
<tr>
<td>Estimated blood loss (mL)</td>
<td>114.4±123.6</td>
<td>159.3±249.1</td>
<td>0.481</td>
</tr>
<tr>
<td>No. of blood transfusions</td>
<td>1</td>
<td>3</td>
<td>>0.99</td>
</tr>
</tbody>
</table>

Data are given as mean±standard deviation, median (range), or number of patients, as indicated. WBC: white blood cells; Hb: hemoglobin; PLT: platelets; PT: prothrombin time; TBIL: total bilirubin; ALB: albumin; ALT: alanine aminotransferase; BUN: blood urea nitrogen; Cr: creatinine

Hepatitis B/hepatitis C/schistosomiasis/alcohol/autoimmunity/idiopathic cirrhosis

Table 2. Multivariate logistic regression analysis

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig</th>
<th>Exp (B)</th>
<th>95%CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.079</td>
<td>0.031</td>
<td>6.383</td>
<td>1</td>
<td>0.012</td>
<td>1.082</td>
<td>1.018-1.150</td>
</tr>
<tr>
<td>Longitudinal spleen diameter</td>
<td>-0.023</td>
<td>0.012</td>
<td>3.713</td>
<td>1</td>
<td>0.054</td>
<td>0.977</td>
<td>0.955-1.000</td>
</tr>
</tbody>
</table>

SE: standard error; CI: confidence interval

Figure 1. Changes in mean platelet counts
POD: postoperative day; POM: postoperative month
age, as shown in Table 5. The overall difference among these measures were significant (p=0.004; Table 5; Figure 2). The incidences of a PLT count <125×10^9/L at POM 3 increased gradually with increasing age as shown in Table 5. The overall differences among these incidences were significant (p=0.001; Table 5).

Similarly, all patients (except 1 with a spleen diameter of 99 mm) were divided into groups according to longitudinal spleen diameter as follows: 121-160 mm, 161-200 mm, and ≥201 mm groups. The PLT count at POM 3 increased gradually with increasing spleen diameter as shown in Table 6. The overall comparison of these measures was significant (P=0.003; Table 6, Figure 3). The incidences of a PLT count <125×10^9/L on POM 3 decreased gradually with increasing spleen diameter, as shown in Table 6. The overall comparison of these incidences was significant (P=0.016; Table 6).

Table 3. Bivariate correlation analysis of the relationship between age and platelet count <125×10^9/L at the postoperative month 3

<table>
<thead>
<tr>
<th>Correlation Factor</th>
<th>Correlation Coefficient</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>45</td>
<td>-0.152</td>
<td>0.093</td>
</tr>
<tr>
<td>>50</td>
<td>-0.251</td>
<td>0.005</td>
</tr>
<tr>
<td>>55</td>
<td>-0.270</td>
<td>0.002</td>
</tr>
<tr>
<td>>60</td>
<td>-0.266</td>
<td>0.003</td>
</tr>
<tr>
<td>>65</td>
<td>-0.225</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Table 4. Bivariate correlation analysis of the relationship between longitudinal spleen diameter and the platelet count <125×10^9/L at the postoperative month 3

<table>
<thead>
<tr>
<th>Correlation Factor</th>
<th>Correlation Coefficient</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal spleen diameter (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>170</td>
<td>0.158</td>
<td>0.081</td>
</tr>
<tr>
<td>>165</td>
<td>0.176</td>
<td>0.051</td>
</tr>
<tr>
<td>>160</td>
<td>0.231</td>
<td>0.010</td>
</tr>
<tr>
<td>>155</td>
<td>0.182</td>
<td>0.044</td>
</tr>
<tr>
<td>>150</td>
<td>0.166</td>
<td>0.067</td>
</tr>
</tbody>
</table>

Data are given as mean±standard deviation, or number (percentage) of patients, as indicated

Table 5. Changes in the platelet count at the postoperative month 3 in different age groups

<table>
<thead>
<tr>
<th></th>
<th>21-35 years</th>
<th>36-50 years</th>
<th>51-65 years</th>
<th>66-80 years</th>
<th>21-80 years</th>
<th>p (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLT count (×10^9/L)</td>
<td>398.3±94.4</td>
<td>261.2±117.9</td>
<td>235.6±104.8</td>
<td>198.8±117.9</td>
<td>245.9±115.0</td>
<td>0.004</td>
</tr>
<tr>
<td>No. with PLT count <125 (×10^9/L)</td>
<td>0 (0.0%)</td>
<td>2 (3.8%)</td>
<td>9 (17.0%)</td>
<td>5 (33.3%)</td>
<td>16 (13.0%)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 6. Changes in the platelet count at the postoperative month 3 in patients with different longitudinal spleen diameters

<table>
<thead>
<tr>
<th></th>
<th>121-160 mm</th>
<th>161-200 mm</th>
<th>≥201 mm</th>
<th>≥121 mm</th>
<th>p (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLT count (×10^9/L)</td>
<td>188.9±78.5</td>
<td>260.2±122.4</td>
<td>275.5±111.3</td>
<td>247.0±114.8</td>
<td>0.003</td>
</tr>
<tr>
<td>No. with PLT count <125 (×10^9/L)</td>
<td>7 (24.1%)</td>
<td>7 (11.1%)</td>
<td>1 (3.3%)</td>
<td>15 (12.3%)</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Data are given as mean±standard deviation, or number (percentage) of patients, as indicated
DISCUSSION

Platelet counts are known to decrease progressively with age in the general population (13-16), with a mean decrease of 6-9×10⁹/L with every additional 10 years of aging (15,16). However, the reasons for this age-related effect are presently unexplained. The decrease in the PLT count during aging may reflect a reduced hematopoietic stem cell reserve or decreased proliferation and differentiation capabilities of hematopoietic stem cells in older people. However, further investigations are required to explore the mechanisms underlying these age-related changes.

The above hypotheses may at least partly explain why age was an independent risk factor for PLT count <125×10⁹/L at POM 3 after LSD in the present study. Furthermore, a bivariate correlation analysis also identified age >50 years as a threshold value for an increased risk of a lower PLT count during POM 3. Consistently, the mean PLT count at POM 3 in patients with a spleen diameter of 121-160 mm was lower than that in patients with diameters of 161-200 and ≥201 mm, and lower than the total mean PLT count at POM 3. Furthermore, the incidence of a PLT count <125×10⁹/L at POM 3 was higher among patients with spleen diameters of 121-160 mm compared with those with diameters of 161-200 and ≥201 mm, and higher than the total mean incidence of the PLT count <125×10⁹/L at POM 3.

In the present study, 5 of the 21 (23.8%) patients with a PLT count <125×10⁹/L at POM 3 were aged age >50 years and had a longitudinal spleen diameter ≤160 mm. This suggests that patients older than 50 years who also have a longitudinal spleen diameter ≤160 mm may be at increased risk of having a PLT count <125×10⁹/L at POM 3 after LSD.

It is necessary to warn patients preoperatively of the possibility of having a PLT count below the normal lower limit after surgery, especially in the case of patients older than 50 years and/or those with a longitudinal spleen diameter ≤160 mm, to avoid postoperative patient dissatisfaction (17).

This retrospective observational study showed that age is an independent positive predictor, and longitudinal spleen diameter is an independent negative predictor of having a PLT below the normal lower limit after LSD. This study also identified age >50 years and a longitudinal spleen diameter ≤160 mm as threshold values for increased risks of a lower PLT count and a PLT count below the normal lower limit at POM 3 after LSD. This study may be limited by its small sample size. Prospective trials with a large sample size are required to confirm these findings.
Ethics Committee Approval: Authors declared that the research was conducted according to the principles of the World Medical Association Declaration of Helsinki “Ethical Principles for Medical Research Involving Human Subjects” (amended in October 2013).

Informed Consent: Written informed consent was obtained from patients who participated in this study.

Peer-review: Externally peer review.

Conflict of Interest: The authors have no conflict of interest to declare.

Financial Disclosure: This work was supported by the Scientific Research Subject of Jiangsu Province Health Department (No. H201661), six kinds of talents of Jiangsu Province (No. WSW-087), and the Project of Invigorating Health Care through Science, Technology and Education: Jiangsu Provincial Medical Youth Talent (QNRC2016331).

REFERENCES
1. Ikegami T, Shimada M, Imura S. Recent role of splenectomy in chronic hepatic disorders. Hepatol Res 2008; 38: 1159-71. [CrossRef]