Lamivudine resistance in untreated chronic hepatitis B patients in Turkey
Türkiye’deki tedavi görmemiş kronik hepatit B’li hastalarda lamivudin direnci

Semra TUNÇBİLÊK1, Sükrân KÖSE2, Ahmet ELALDI1, Sezin AKMAN4

Department of Clinical 1Bacteriology and Infectious Diseases, Ufuk University, Medical School, Ankara
2Clinics of Infectious Diseases and Clinical Microbiology, 3Pediatric Gastroenterology Clinic, Ministry of Health İzmir Tepecik Education and Research Hospital, İzmir
4Clinics of Infectious Diseases, Sakarya Yenihent State Hospital, Sakarya

Background/aims: Hepatitis B virus infection is an epidemiological problem throughout the world, including in Turkey. Lamivudine is one of the hepatitis B virus reverse-transcriptase inhibitors used for the treatment of chronic hepatitis B virus infection. Lamivudine resistance can develop not only following treatment; it can also be seen in untreated patients. This resistance is related with structural changes in the tyrosine-methionine-aspartate-aspartate motif of the polymerase enzyme gene. Our objective was to evaluate the prevalence of lamivudine resistance in Turkish chronic hepatitis B virus-infected patients with D genotype before antiviral treatment. Methods: Seventy-seven patients with chronic hepatitis B virus infection were evaluated for viral loads, HBeAg, anti-HBe antibody, ALT levels, histological activity index, and tyrosine-methionine-aspartate-aspartate mutations. Results: Tyrosine-methionine-aspartate-aspartate motif mutations were determined in 3 of 24 HBeAg positive and 3 of 53 anti-HBe positive patients with a rate of 7.8%. Two of the mutations were YIDD and 4 were YVDD. Median ALT value in patients with mutations was 88 IU/L (range 55-276) and histological activity index was 9 (range 6-10); these values in patients without mutations were 58 (range 19-176) and 10 (range 2-18), respectively. Knodell fibrosis scores of patients were as follows: 0: 13.2%, 1: 28.9%, 2: 21.1%, 3: 34.2%, and 4: 2.6%. There were no significant differences between the patients regarding Knodell fibrosis scores. One patient was diagnosed as cirrhosis. Conclusions: Evaluation of chronic hepatitis B virus patients for lamivudine resistance and planning the treatment accordingly may prevent complications and can increase the effectiveness of the treatment.

Key words: Hepatitis B, YMDD, genotype D, lamivudine, untreated

INTRODUCTION
Lamivudine (dideoxy-2',3'-thiacytidine) is the first hepatitis B virus (HBV) reverse-transcriptase (RT) inhibitor to be approved for the treatment of chronic hepatitis B (1, 2). Lamivudine effectively suppresses viral replication, reduces disease activity, improves liver histology, and delays clinical progression (2-4). The most important mechanism of anti-polymerase/RT activity of lamivudine and
other nucleoside analogues is inhibiting elongation of the HBV DNA minus strand through competition with the natural polymerase substrate dCTP and by acting as a chain terminator through its incorporation in the nascent DNA strand (5, 6).

HBV DNA polymerase is a highly conservative YMDD order locating in the polymerase structural region C area, which is the combining and functioning site of lamivudine (7).

Drug resistance can develop during treatment with lamivudine, occurring in 14%-32% of patients after one year of therapy (8,9). The rate of resistance increases with increased duration of treatment, 38% after two years, 53% to 76% after three years (10) and 65% to 70% after five years (11,12). However, lamivudine resistant mutants are also seen in untreated asymptomatic carriers or chronic hepatitis B patients (13-15). This resistance is related with structural changes in gene of polymerase enzyme. Lamivudine resistance increases the potential of cross-resistance to other L-nucleoside and nucleotide analogues and limits sensitivity to entecavir, thereby limiting treatment options (16).

Testing for drug-resistant mutations in selected patients might be useful for determination of the need for alternative drug therapy. In order to decide whether this would be appropriate, the prevalence of these variants among the HBV-infected population needs to be ascertained. The aim of this study was to evaluate the prevalence of lamivudine resistance in naive Turkish HBV-infected patients with D genotype.

MATERIALS AND METHODS

Serum samples of 77 patients aged between 3 – 63 years who were diagnosed as chronic hepatitis B with liver biopsy and/or biochemical and molecular tests, with genotype D, and who did not receive antiviral treatment were evaluated in this study. After approval of the experimental protocol by the local human ethics committee, informed consent was obtained from each subject or the subject’s guardian. Patients with chronic hepatitis due to other reasons, who were infected with human immunodeficiency virus (HIV) or hepatitis C virus, and who had any other serious diseases were not included in this study.

The viral load of the patients was measured with real-time polymerase chain reaction (PCR), “Roche Taq Man”, HBeAg and anti-HBe antibody with ELISA. YMDD mutation analysis was done by real-time PCR and confirmed by DNA sequence analysis, and genotype was also detected by DNA sequence analysis.

Real-time PCR

The real-time PCR reactions were carried out in a total volume of 10 µl with 0.5 µM of each primer, 0.2µM of Cy-5 labeled probe (17) and 4mM MgCl2 using FastStart DNA master SYBR Green I kit (Roche Applied Sciences, Germany). The cycling parameters were 10 min at 95 °C for activating hot start Taq polymerase, 50 cycles of 10 s at 95 °C, 10 s at 55 °C and 72 °C for 12 s for amplification, and were followed by a melting program of 40 to 75 °C at 0.2 °C/s with continuous monitoring of the fluorescence.

DNA sequencing

HBV DNA was extracted from serum samples. HBV DNA polymerase gene region was amplified by nested-PCR using specific primers. PCR products were analyzed on UV transilluminator and purified from agarose gel (18). The purified products were sequenced by Visible Genetics OpenGene system using Cy5.5 dye terminator kit (Amersham Biosciences, USA) according to the manufacturer’s protocol.

Histological activity index (HAI)

Liver biopsy specimens were evaluated as defined by Knodell et al. (19) by an independent pathologist.

Statistical Method

Viral load values regarding mutation group were described using mean, median, standard deviation, and minimum and maximum values. The difference between median viral load values was evaluated by Mann-Whitney U test because of non-normal distribution. For all tests, a two-tailed P-value of 0.05 was considered as indicating significance level. The analysis was performed by SPSS software (version 15.0, SPSS Inc. Chicago, USA). Power analysis was performed based on descriptive statistical results and with PASS 2005 (Hintze J, 2006, Kaysville, USA).

RESULTS

The mean age of the 77 (22 [28.6%] female) chronic hepatitis B patients was 31.6±13.8 years (range 3 – 63 years). YMDD motif mutations were determined in 3 of 24 HBeAg positive patients and 3 of 53 anti-HBe positive patients. Total mutation
rate was 7.8%; 2 of the mutations were YIDD (tyrosine, isoleucine, aspartate, aspartate) and 4 were YVDD (tyrosine, valine, aspartate, aspartate) (Table 1). There was full concordance between sequencing and real-time PCR results. The mutation ratio was the same with both methods. The detection limit of real-time PCR was 1000 copies per milliliter of mutants.

The median viral load of the YMDD motif group (202,679.711 copies/ml) was lower than in the other mutation group (317,976.423 copies/ml), but the difference between them was not statistically significant (p= 0.482) (Table 2).

The median alanine aminotransferase (ALT) value in patients with mutations was 88 IU/L (range 55-276) and in patients without mutations was 58 (range 19-176). HAI of patients with mutations was 9 (range 6-10) and of patients without mutations was 10 (range 2-18). Due to insufficiency of data, no statistical comparisons of ALT and HAI were made.

Knodell fibrosis scores of the patients were 0 in 13.2%, 1 in 28.9%, 2 in 21.1%, 3 in 34.2%, and 4 in 2.6%. There were no significant differences between the patients regarding Knodell fibrosis scores. Only one patient was diagnosed as cirrhosis.

DISCUSSION

Lamivudine was the first nucleoside analogue licensed for the treatment of chronic HBV. Lamivudine is a cytosine analogue and inhibits RT by competing for incorporation into growing DNA chains causing chain termination. Lamivudine can be taken orally in a dosage of 100 mg daily, is generally well tolerated and has an excellent safety profile (20).

Lamivudine resistance can be seen among patients who received treatment or not. Moreover, no patient-related factors such as age, gender and disease status affect the rate of lamivudine-resistant mutations. However, the YMDD mutation rates change between 7.5% - 29.5% (21-23) among different populations. It may be suggested that this difference is related with the genotype of HBV infecting that population, as it has been reported that mutations mostly occurred in genotype C and its mixed genotypes (23). This may explain the difference in YMDD mutation rates among the different series and the 7.8% mutation rate seen in our patients, all of whom were infected with D genotype.

Another factor related with lamivudine-resistant mutations may be the status of HBe antigen. Although we could not find a relationship between anti-HBe antibody and the rates of mutations, Kobayashi et al. (13) showed a YMDD mutation rate of 27.7% in asymptomatic carriers who never received treatment and all of whom were anti-HBe positive. Lamivudine resistance is reported to be 26.9% in untreated chronic hepatitis patients, 42.8% of whom were anti-HBe positive (14). Ye et al. (24) found that anti-HBe was positive in most patients with YMDD mutations and considered that YMDD mutations might occur more easily if mutations took place in the pre-c-zone. However, there are studies showing that there is no difference in mutation rates between patients who have anti-HBe antibody or not in accordance with the results of this study (21, 23, 25). Therefore, YMDD mutations might not have a relationship with pre-c-zone mutations.

HBV DNA level has been reported as not demonstrating a positive correlation with the incidence of YMDD mutations (14, 23, 25). We also showed similar viral loads in patients with or without YMDD mutations.

Lamivudine has potent inhibitory effects on HBV replication. Prolonged therapy is required for sustained suppression. HBeAg seroconversion occurs in 16 to 22% of patients by one year compared with 4 to 13% of untreated controls (2, 26, 27). Higher cumulative HBeAg seroconversion rates were observed with increased duration of lamivudine treatment, with 29% at two years, 40% at three years, and 47% at four years of therapy (27-29).

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>HBeAg/anti-HBe</th>
<th>Viral load copies/ml</th>
<th>Mutation</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Male</td>
<td>Negative/Positive</td>
<td>13,870</td>
<td>YIDD</td>
<td>D</td>
</tr>
<tr>
<td>12</td>
<td>Male</td>
<td>Positive/Negative</td>
<td>3,855,810</td>
<td>YVDD</td>
<td>D</td>
</tr>
<tr>
<td>8</td>
<td>Male</td>
<td>Positive/Negative</td>
<td>64x10^7</td>
<td>YIDD</td>
<td>D</td>
</tr>
<tr>
<td>7</td>
<td>Female</td>
<td>Positive/Negative</td>
<td>64x10^7</td>
<td>YVDD</td>
<td>D</td>
</tr>
<tr>
<td>30</td>
<td>Male</td>
<td>Negative/Positive</td>
<td>1.42</td>
<td>YVDD</td>
<td>D</td>
</tr>
<tr>
<td>45</td>
<td>Male</td>
<td>Negative/Positive</td>
<td>11,730</td>
<td>YVDD</td>
<td>D</td>
</tr>
</tbody>
</table>

Table 1. The mutations, HBeAg/anti-HBe status and viral loads of the patients with mutations
duction of serum HBV DNA occurs in 98% of patients (10). Prolonged duration of ongoing lamivudine therapy after HBeAg seroconversion and low pretreatment HBV DNA seem to be associated with decreased relapse rates and prevention of adverse clinical outcomes in patients with advanced liver disease (bridging fibrosis or cirrhosis) (30). Disease progression, defined as a two-point increase in Child-Turcotte-Pugh score, and development of hepatocellular cancer were found to be significantly decreased in lamivudine-treated patients compared with untreated controls (31). The major drawback of lamivudine, which significantly limits its use as first-line therapy, is the high rate of occurrence of viral resistance. Resistance to lamivudine may emerge after 9-10 months of therapy, with an incidence of 38% and 67% after two and four years of lamivudine therapy, respectively. Patients who develop YMDD mutant during lamivudine therapy for HBV infection exhibit various clinical courses. The emergence of lamivudine-resistant mutants is usually associated with an increase in serum HBV DNA and ALT, and selection of YMDD variants has been associated with worsening of liver histology (31-33). Although viral clearance with or without emergence of distinct lamivudine-resistant mutants may occur after such exacerbations, 20% of the exacerbations are complicated with decompensation or even fatality. The exacerbations appear to be more severe than those that occur during the natural course of wild-type HBV chronic infection (34).

Lamivudine resistance, at a rate of one in every 10 chronic HBV-infected patients as shown in this study, is not a value that can be underestimated. Thus, evaluation of chronic HBV patients for lamivudine resistance and planning the treatment accordingly may prevent complications and can increase the effectiveness of the treatment.

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Median</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>YMDD motif group</td>
<td>61</td>
<td>86.88</td>
<td>202.679.711</td>
<td>117.564</td>
<td>913</td>
</tr>
<tr>
<td>YMDD mutation group</td>
<td>6</td>
<td>277.63</td>
<td>317.976.423</td>
<td>192.906</td>
<td>1.427</td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
<td>103.96</td>
<td>219.125.747</td>
<td>117.564</td>
<td>913</td>
</tr>
</tbody>
</table>

Table 2. Power Analysis: Group sample sizes of 61 and 6 achieve 99% power to detect a difference of 190.754.925 between the YMDD motif group (mean±SD of 86.88±117.56) and YMDD mutation group (mean±SD of 277.63±192.90) with a significance level (alpha) of 0.048 using a two-sided Mann-Whitney test.

Viral load (copies/ml)
Lamivudine resistance